Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Breast carcinoma is the most common cancer among women worldwide that consists of a heterogeneous group of subtype diseases. The whole-slide images (WSIs) can capture the cell-level heterogeneity, and are routinely used for cancer diagnosis by pathologists. However, key driver genetic mutations related to targeted therapies are identified by genomic analysis like high-throughput molecular profiling. In this study, we develop a deep-learning model to predict the genetic mutations and biological pathway activities directly from WSIs. Our study offers unique insights into WSI visual interactions between mutation and its related pathway, enabling a head-to-head comparison to reinforce our major findings. Using the histopathology images from the Genomic Data Commons Database, our model can predict the point mutations of six important genes (AUC 0.68–0.85) and copy number alteration of another six genes (AUC 0.69–0.79). Additionally, the trained models can predict the activities of three out of ten canonical pathways (AUC 0.65–0.79). Next, we visualized the weight maps of tumor tiles in WSI to understand the decision-making process of deep-learning models via a self-attention mechanism. We further validated our models on liver and lung cancers that are related to metastatic breast cancer. Our results provide insights into the association between pathological image features, molecular outcomes, and targeted therapies for breast cancer patients.more » « less
-
Goal: Lifting is a common manual material handling task performed in the workplaces. It is considered as one of the main risk factors for work-related musculoskeletal disorders. An important criterion to identify the unsafe lifting task is the values of the net force and moment at L5/S1 joint. These values are mainly calculated in a laboratory environment, which utilizes marker-based sensors to collect three-dimensional (3-D) information and force plates to measure the external forces and moments. However, this method is usually expensive to set up, time-consuming in process, and sensitive to the surrounding environment. In this study, we propose a deep neural network (DNN)-based framework for 3-D pose estimation, which addresses the aforementioned limitations, and we employ the results for L5/S1 moment and force calculation. Methods: At the first step of the proposed framework, full body 3-D pose is captured using a DNN, then at the second step, estimated 3-D body pose along with the subject's anthropometric information is utilized to calculate L5/S1 join's kinetic by a top-down inverse dynamic algorithm. Results: To fully evaluate our approach, we conducted experiments using a lifting dataset consisting of 12 subjects performing various types of lifting tasks. The results are validated against a marker-based motion capture system as a reference. The grand mean ± SD of the total moment/force absolute errors across all the dataset was 9.06 ± 7.60 N·m/4.85 ± 4.85 N. Conclusion: The proposed method provides a reliable tool for assessment of the lower back kinetics during lifting and can be an alternative when the use of marker-based motion capture systems is not possible.more » « less
An official website of the United States government
